Modification of human high density lipoprotein (HDL₃) with tetranitromethane and the effect on its binding to isolated rat liver plasma membranes

George K. Chacko

Department of Physiology and Biochemistry, The Medical College of Pennsylvania, 3300 Henry Avenue, Philadelphia, PA 19129

SBMB

Abstract Apolipoprotein E-free high density lipoproteins (HDL) bind to various cells and cell membrane preparations, with properties typical of ligand-receptor interactions. In order to further characterize the binding sites and to investigate the functional role of binding, a chemically modified HDL without the specific binding properties would be highly desirable. We have reacted human HDL₃ with tetranitromethane, a relatively specific nitrating reagent for tyrosine residues, in 50 mM Tris HCL buffer, pH 8.0, and at a reagent concentration 10 times the molar excess of tyrosine residues. The resulting nitrated HDL₃ completely lost its ability to bind to high affinity saturable binding sites of rat liver plasma membranes, as determined by competitive binding with ¹²⁵I-labeled HDL₃, and also by direct binding assays using ¹²⁵I-labeled nitrated HDL₃. Although nitrated HDL₃ did not bind to the high affinity saturable binding sites, it bound to the membranes, but the binding was not saturable, and was not competed for by unlabeled nitrated HDL₃. On agarose gel electrophoresis, pH 8.6, the nitrated HDL₃ moved ahead of the control HDL₃, indicating an increase in negative charges in the molecule. No difference in size was noted in the nitrated HDL₃ when analyzed either by negative stain electron microscopy or by gel filtration chromatography. Spectroscopic analysis of the nitrated HDL₃ at pH 8.0 revealed a prominent absorption with maximum at around 360 nm, but none in the region expected for nitrotyrosine residues. At pH 10.0, however, the nitrated HDL₃ showed an absorption band with a maximum at around 440 nm, possibly related to nitrotyrosine residues. Nitrotyrosine was detected in the nitrated HDL₃ on amino acid analysis. Comparison of the amino acid analysis of the nitrated HDL₃ and control HDL₃ showed no difference in composition of any of the amino acids except tyrosine; tyrosine content was reduced more than 90% in the nitrated HDL₃. SDS-polyacrylamide gel electrophoresis analysis of apoproteins of nitrated HDL₃ revealed changes in apolipoprotein profile. Bands corresponding to the apolipoproteins of the starting HDL₃ almost disappeared and a series of new bands appeared at the high molecular weight region of the gel, indicating extensive cross-linking of apolipoproteins during the reaction. In addition, a substantial amount of phospholipids and cholesteryl esters, but not unesterified cholesterol, was found covalently linked, possibly through the unsaturated centers of the fatty acid chains, to apolipoproteins. In The loss of the binding activity of HDL₃ by the nitration reaction appears to be related to covalent cross-linking of lipids to apolipoproteins and of apolipoproteins themselves. The availability of a modified HDL₃

preparation with no binding ability to the high affinity saturable binding sites may be useful for studies related to the functional aspects of HDL binding sites. – **Chacko, G. K.** Modification of human high density lipoprotein (HDL₃) with tetranitromethane and the effect on its binding to isolated rat liver plasma membranes. J. Lipid Res. 1985. 26: 745-754.

Supplementary key words HDL binding sites • nitration of tyrosine • cross-linking of apolipoproteins and lipids

Although high-affinity saturable binding sites for high density lipoproteins (HDL) have been detected in a variety of cells (1-17) and membrane preparations (18-23), very little information is available on the nature of the binding sites or their physiological function. They have been implicated in the efflux of unesterified cholesterol from cells (24, 25). In addition, the HDL binding sites detected in rat steroidogenic tissues appear to be involved in the delivery of cholesterol to these tissues for the synthesis of steroid hormones (4-6, 13, 20-22). In order to investigate the possible role of the HDL binding in the above proposed functions, a chemically modified HDL preparation without the specific HDL binding properties would be highly desirable. Recent attempts to inhibit the binding of human HDL₃ to rat liver and rat testes plasma membrane preparations by chemical modification of the lysine or the arginine residues of HDL₃ were not successful (26). In the present studies, we have reacted human HDL₃ with tetranitromethane, a presumably specific nitrating reagent for tyrosine residues. The resulting nitrated HDL₃ completely lost its ability to bind to the HDL binding sites of rat liver plasma membranes. The results of these studies plus those on the characterization of the nitrated HDL₃ are given in this report.

Abbreviations: HDL, high density lipoproteins; SDS, sodium dodecyl sulfate; PAGE, polyacrylamide gel electrophoresis; BSA, bovine serum albumin.

Materials

Human HDL₃ (1.125 < d < 1.21 g/ml) was isolated by differential ultracentrifugation as described (27). It was further processed by heparin-Sepharose affinity chromatography (28) to remove any traces of apolipoprotein E, if present. Apolipoprotein A-I constituted about 90% of human HDL₃ apolipoproteins as determined by SDSpolyacrylamide gel electrophoresis (PAGE) followed by Coomassie blue staining and densitometric scanning (29): the other components were apolipoprotein A-II and C apolipoproteins. Occasionally, traces of albumin were detected. HDL₃ was labeled with ¹²⁵I using the iodine monochloride procedure (30). The specific activities ranged from 70 to 100 cpm/ng protein. An averge of about 2% of the label was associated with lipids. Fatty acid-free bovine serum albumin (BSA) and 3-nitrotyrosine were from Sigma Chemical Co. (St. Louis, MO). Tetranitromethane was purchased from Aldrich Chemical Co. (Milwaukee, WI). All other chemicals were of reagent grade.

Methods

Isolation of membrane fractions. Fischer 344 strain male rats weighing 100-150 g were used. Liver plasma membranes were isolated according to the procedure of Ray (31), as described previously (23). The membranes were suspended in 10 mM Tris-HCl buffer, pH 7.4 (containing 0.15 M NaCl and 0.5 mM CaCl₂) at a protein concentration of 5 mg/ml, and used for the binding studies.

Binding of ¹²⁵I-labeled HDL₃ and nitrated ¹²⁵I-labeled HDL₃ to isolated membranes. The binding of ¹²⁵I-labeled HDL₃ to isolated membranes was determined according to the procedure described previously (26). Briefly, aliquots of membranes (200 μ g of protein) were incubated with ¹²⁵Ilabeled HDL₃ at room temperature for 1 hr in a total volume of 0.2 ml, containing 10 mM Tris-HCl, pH 7.4, 0.5 mM CaCl₂, and 1% BSA. After incubation, 0.175-ml aliquots of the incubation mixture were centrifuged in a Beckman 42.2 Ti rotor at 30,000 rpm for 15 min to recover the membranes. The membrane pellets were washed once with 0.175 ml of incubation medium and the tubes containing the membranes were assayed for radioactivity in a Beckman Model 300 gamma scintillation spectrometer with a ¹²⁵I counting efficiency of 66%. Nonspecific binding of ¹²⁵I-labeled HDL₃ to the membranes was determined in samples run in parallel that also contained a 100-fold excess of unlabeled HDL₃. The difference between the ¹²⁵I-labeled HDL₃ bound to the membranes in the absence and in the presence of excess unlabeled HDL₃ was taken as the amount of specific binding. The effect of nitration of HDL₃ on the binding of HDL₃ to the membranes was investigated by studying its ability to compete

for the binding of 125 I-labeled HDL₃ to the membranes. Similar procedures were used to determine the binding characteristics of nitrated 125 I-labeled HDL₃ to the membranes.

Preparation of nitrated HDL₃ and nitrated ¹²⁵I-labeled HDL₃. Unless otherwise described, the following procedure employing a 10-fold molar excess of reagent - based on seven tyrosine residues per molecule of apolipoprotein A-I-was used for the preparation of nitrated HDL₃. In a typical experiment, 75 μ l of 0.84 M tetranitromethane in 95% ethanol was added to 25 mg of HDL₃ (protein) in 2.5 ml of 0.05 M Tris-HCl buffer, pH 8.0, containing 0.1 M NaCl, and immediately mixed. After incubation for 1 hr at room temperature, during which the solution would turn yellow, the reaction mixture was applied to a Biogel P-6 DG desalting column (1 \times 30 cm) and eluted with 0.05 M Tris-HCl, pH 8.0 buffer, containing 0.1 M NaCl. The nitrated HDL₃, eluting as the first yellow component from the column was recovered and analyzed. The yield was 24.5 mg of protein. Nitrated ¹²⁵I-labeled HDL₃ was prepared from ¹²⁵I-labeled HDL₃ in the same manner.

Chemical and physical analyses. Protein was determined by the method of Lowry et al. (32); protein in nitrated HDL₃ was determined according to the Biuret procedure (33). BSA was used as the standard. Polyacrylamide gel electrophoresis of apolipoproteins was performed on 10% gels containing 0.1% SDS (29).

Total lipids were extracted from lipoprotein preparations using the procedure of Bligh and Dyer (34). Lipid phosphorus was measured according to the procedure of Rouser, Siakotos, and Fleischer (35). For the determination of phosphorus linked to apolipoproteins, the lipids were extracted from the lipoprotein samples by the methanol-chloroform-ethyl ether extraction procedure of Lux, John, and Brewer (36) and the apolipoprotein residue was analyzed for phosphorus by the procedure of Rouser et al. (35). Cholesterol was determined by gas-liquid chromatography using coprostanol as an internal standard. Unesterified and total cholesterol represented, respectively, cholesterol determined before and after saponification (37). Esterified cholesterol was obtained by difference. For the determination of esterified cholesterol covalently linked to apolipoproteins, the lipoprotein samples were first delipidated, according to the procedure of Lux et al. (36), the apolipoprotein residue was saponified (37), and the extract was analyzed for cholesterol by gas-liquid chromatography.

Agarose gel electrophoresis was carried out in barbital buffer, pH 8.6, in the apparatus and according to the direction of Bio-Rad Laboratories (Richmond, CA). After electrophoresis, the lipoproteins were visualized by staining with Sudan Black B. For electron microscopy, the lipoprotein samples were negatively stained with 2% sodium phosphotungstrate, pH 7.0, and examined in a

SBMB

Zeiss 10 transmission electron microscope operating at 80 KV and at $50,000 \times \text{magnification}$. Gel filtration of HDL₃ and nitrated HDL₃ was done in a 85×2 cm Sephacryl S-200 column (Pharmacia Fine Chemicals, Upsala, Sweden); the column wsa eluted with 0.15 M NaCl containing 0.02% EDTA, pH 7.4, and 0.02% sodium azide, at a flow rate of 20 ml/hr. Fractions (3.5 ml) were collected and analyzed for absorption at 280 nm and 360 nm. The control and the nitrated HDL₃ were hydrolyzed in 6 N HCl under vacuum for 24 hr at 110°C and the amino acid composition was determined on a Beckman 6300 amino acid analyzer.

RESULTS

Reaction of tetranitromethane with HDL₃

The reaction conditions described by Sokolovsky, Riordan, and Vallee (38) for the nitration of the tyrosine residues of protein were applied for the nitration of HDL₃. Fig. 1 shows the course of nitration of HDL₃ with a 10 molar excess of tetranitromethane at pH 8.0, as followed by measuring the increase in absorption at 350 nm as a function of time. The absorption at 350 nm is due to nitroformate, a byproduct formed in the reaction (38). The reaction was rapid and complete in 60 min. Gel filtration of the reaction mixture served to remove the excess reagent and the nitroformate from the nitrated HDL₃. The recovery of the nitrated HDL₃ was almost quantitative. The nitrated HDL₃ was quantitated by the

Fig. 1. Increase in absorbance at 350 nm on nitration of HDL₃; 1.0 mg of HDL₃ protein in 3.5 ml of 0.05 M Tris-HCl, pH 8.0, containing 0.1 M NaCl, and 3 μ l (0.84 M in 95% ethanol) of tetranitromethane (10 molar excess). The absorbance at each time point was corrected for absorbances due to HDL₃ and due to the reagent.

Biuret method (33); the nitration of HDL_3 affected the protein estimation by the procedure of Lowry et al. (32).

In order to detect nitrotyrosine residues in the nitrated HDL₃, the absorption spectrum of the sample between 310 and 500 nm was determined and is given in Fig. 2A, along with that of standard 3-nitrotyrosine (Fig. 2B). At pH 8.0 nitrotyrosine had an absorption maximum at approx. 420 nm and it shifted to approx. 360 nm at pH 6.0. The nitrated HDL₃ at pH 8.0 had a strong absorption band with a maximum of approx. 370 nm but no absorption was seen in the region near 420 nm, expected for nitrotyrosine residues at this pH. At a higher pH of 10, however, the nitrated HDL₃ showed a new absorption band with a maximum at approx, 440 nm; the 360 nm band shifted to a maximum of approx. 370 nm. The spectrum of nitrated HDL₃ in 0.1 N NaOH was similar to that at pH 10.0. Control HDL₃ did not have any significant absorption in the range of 310 to 550 nm at pH 6.0, 8.0, or 10.0.

On agarose gel the nitrated HDL₃ migrated as a single band and it moved farther toward the anode than did the control HDL₃ (**Fig. 3**) indicating the generation of negatively charged groups during the nitration of HDL₃. Control and nitrated HDL₃ were well separated from one another when a mixture was electrophoresed. The amino acid compositions of the control and the nitrated HDL₃ were similar except for tyrosine; only traces of tyrosine (retention time 24.3 min relative to 25.83 min for phenylalanine) were detected in the acid hydrolysate of nitrated HDL₃ (**Fig. 4**). A new peak with a retention time of 26.81 min was detected in the nitrated HDL₃. The retention time of this new component was the same as that of standard 3-nitrotyrosine (Fig. 4).

Effect of the nitration of HDL₃ on the binding

For the determination of the effect of nitration on the binding of HDL₃ to the membranes, the ability of nitrated HDL₃ to compete with ¹²⁵I-labeled HDL₃ for the binding sites was studied. As is shown in Fig. 5, the nitrated HDL₃ did not significantly affect the binding of ¹²⁵Ilabeled HDL₃ to rat liver plasma membranes, whereas control HDL₃ reduced the binding more than 80%. Nitration of HDL₃, therefore, resulted in particles with no ability to compete with ¹²⁵I-labeled HDL₃ for the binding sites. In order to relate the loss of the ability of HDL₃ to compete for the binding sites to the nitration reaction. HDL₃ was nitrated with varying molar concentrations of tetranitromethane, and the resulting nitrated HDL₃ was analyzed for its ability to compete with ¹²⁵I-labeled HDL₃ for the binding sites (Fig. 6). The HDL_3 preparation nitrated with 10 molar excess of tetranitromethane completely lost its ability to compete for the binding sites, whereas that nitrated with 1 or 2 molar excess of reagent showed reduced ability to compete for the binding sites.

BMB

IOURNAL OF LIPID RESEARCH

Fig. 2. Effect of pH on the absorption spectra of nitrated HDL₃ and 3-nitrotyrosine. A, Nitrated HDL₃ (\bigcirc) 0.5 mg/ml 0.05 M Tris-HCl, pH 8.0, 0.1 M NaCl; nitrated HDL₃ (\bullet), 0.5 mg/ml 0.05 M Tris-HCl, pH 10.0, 0.1 M NaCl; HDL₅, (\triangle), 1.0 mg/ml 0.05 M Tris-HCl, pH 8.0, 0.1 M NaCl and pH 10.0, 0.1 M NaCl. B, 3-Nitrotyrosine (\bigcirc), 0.1 mM, 0.05 M Tris-HCl, pH 8.0, 0.1 M NaCl; (\bullet), 0.1 mM, 0.15 M NaCl, 2 mM EDTA, pH 6.0.

The loss of ability of HDL₃ nitrated with 2 molar excess of reagent to compete for the binding sites was greater than the sample treated with a 1 molar excess of reagent.

As further characterization of the loss of the ability of nitrated HDL₃ to compete for the binding sites, the binding characteristics of nitrated ¹²⁵I-labeled HDL₃, prepared by nitration of ¹²⁵I-labeled HDL₃ with a 10 molar excess of tetranitromethane, were studied. Fig. 7A shows the concentration-dependent binding of nitrated ¹²⁵Ilabeled HDL₃ to rat liver plasma membranes. The binding of nitrated ¹²⁵I-labeled HDL₃ increased linearly with increasing concentration; the binding in the presence of a 50-fold excess of unlabeled nitrated HDL₃ was also linear. The presence of an excess of unlabeled nitrated HDL₃ did not significantly reduce the binding of nitrated ¹²⁵I-labeled HDL₃ to the membranes. Thus, although the nitrated ¹²⁵I-labeled HDL₃ bound to the membranes, the binding did not appear to be displaceable or saturable. Competitive binding experiments showed that neither HDL₃ nor nitrated HDL₃ reduced significantly the binding of nitrated ¹²⁵I-labeled HDL₃ (Fig. 7B), suggesting that the nitrated ¹²⁵I-labeled HDL₃ was not binding to the HDL binding sites and that it was binding nonspecifically to the membranes.

Characterization of nitrated HDL₃

In Fig. 8 is shown a comparison of the apolipoprotein patterns of nitrated HDL_3 with those of control HDL_3

Fig. 3. Agarose gel electrophoresis of control HDL₃ and nitrated HDL₃. A, Control HDL₃; B, mixture of control and nitrated HDL₃; C, nitrated HDL₃.

determined by SDS-PAGE. A marked reduction in the apolipoproteins of HDL₃ was seen in the nitrated HDL₃. A series of Coomassie blue-stained bands appeared at the high molecular weight region of the gel, suggesting covalent cross-linking of apolipoproteins to high molecular weight polymers during the nitration of HDL₃ with tetranitromethane. The small amount of albumin that was present as a contaminant in the preparation of HDL₃ appeared to remain unchanged during the nitration reaction. There was no indication of cross-linking between HDL particles when the nitrated HDL₃ was analyzed by

Retention time

Fig. 4. Chromatographic analyses of the amino acids of control HDL₃ (B), nitrated HDL₃ (C), and standard 3-nitrotyrosine (A). Each sample was chromatographed separately. To facilitate presentation, that portion of the chromatograms containing tyrosine, phenylalanine, and 3-nitrotyrosine peaks is shown; the rest of the chromatogram was identical for control HDL₃ and nitrated HDL₃.

Fig. 5. Effect of HDL₃ and nitrated HDL₃ on the binding of ¹²³I-labeled HDL₃ to rat liver membranes. Each incubation mixture contained 200 μ g of membrane protein, 10 μ g ¹²³I-labeled HDL₃ protein/ml of incubation medium (0.15 M NaCl, 0.5 mM CaCl₂, 10 mM Tris-HCl, pH 7.4, 10 mg/ml of bovine serum albumin) and indicated concentration of either HDL₃ (\bullet) or nitrated HDL₃ (\odot). After incubation at 22°C for 1 hr the amount of ¹²⁵I-labeled HDL₃ bound to the membranes was determined as described in Materials and Methods.

Fig. 6. The relationship between the extent of nitration of HDL₃ and its ability to compete with ¹²⁵I-labeled HDL₃ for the HDL binding sites in rat liver plasma membranes. Aliquots of HDL₃ were nitrated with 1 (\blacktriangle), 2 (\triangle), and 10 (\bigcirc) molar excess of tetranitromethane as described in Materials and Methods. The amount of phospholipid phosphorus found in the apolipoprotein residues were 1.1, 1.6, and 2.5 µg/mg protein, respectively. The nitrated HDL₃ samples, along with control HDL₃ (\bigcirc) were studied for their ability to compete with ¹²³I-labeled HDL₃ for the binding sites. The experimental protocols were the same as given in the legend of Fig. 5.

Fig. 7. A, Binding of nitrated ¹²⁵I-labeled HDL₃ to rat liver membranes as a function of its concentration. Aliquots of rat liver membranes (200 μ g of protein) were incubated with indicated concentrations of nitrated ¹²⁵I-labeled HDL₃ in 0.2 ml of incubation medium containing 10 mg/ml bovine serum albumin for 1 hr at 22°C in the absence (\bullet) and in the presence (\bigcirc) of 50-times excess of unlabeled nitrated HDL₃. The bottom line (\blacktriangle) represents the difference between the binding of nitrated ¹²⁵I-labeled HDL₃ to the membranes in the absence and in the presence of excess of unlabeled nitrated HDL₃. The data are the average of three determinations using three different nitrated ¹²⁵I-labeled HDL₃ preparations. B, Effect of control and nitrated HDL₃ on the binding of nitrated ¹²⁵I-labeled HDL₃ to rat liver membranes. Each incubation mixture contained 200 μ g of membrane protein, 10 μ g of nitrated ¹²⁵I-labeled HDL₃ to rat liver membranes. Each incubation mixture contained 200 μ g of membrane protein, 10 μ g of nitrated ¹²⁵I-labeled HDL₃ to rat liver membranes. Each incubation mixture contained 200 μ g of membrane protein, 10 μ g of nitrated ¹²⁵I-labeled HDL₃ membrane for a total volume of 0.2 ml incubation medium, and indicated concentrations of either control (\bigcirc) or nitrated (\bullet) HDL₃. The experimental protocols were the same as given in the legend of Fig. 5. The data are the average of two different experiments.

ASBMB

Fig. 8. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of control (B) and nitrated (C) HDL₃ apolipoproteins. On the left (A) is shown the pattern of rat HDL apoproteins, used as a standard. Fifty μ g of protein/gel was employed; A-I refers to the apolipoprotein A-I, the major apolipoprotein of human HDL₃. It is almost completely lost on nitration, appearing as a series of Coomassie blue-stained bands at the high molecular weight region of the gel.

negative stain electron microscopy (Fig. 9). No aggregate particles were detected in the preparation. Both the control and the nitrated HDL₃ were of similar size. Control HDL₃ had a mean diameter of 96.3 Å and nitrated HDL₃ had a mean diameter of 97.7 Å; 200 particles of each were measured. Gel filtration chromatography of a mixture of control and nitrated HDL₃ on a Sephacryl S-200 column also showed that the modified HDL₃ had the same size as the control HDL₃ (Fig. 10). When fractions from the column were analyzed at 280 nm for protein and at 360 nm for nitrated HDL₃, overlapping peaks were obtained.

In **Table 1** is shown the lipid composition of the control and the nitrated HDL₃. Although there was no difference in the phosphorus content between the control and the nitrated HDL₃, the lipid extract from the nitrated HDL₃ gave a lower phosphorus value than the lipid extract from the control HDL₃, suggesting that part of the phospholipid in the nitrated HDL₃ was linked covalently to the apolipoprotein residue. This was indeed found to be the case when the apolipoprotein residue was analyzed for bound phosphorus. While only negligible phosphorus was found in the apolipoprotein residue of control HDL₃, an amount of phosphorus equal to the difference between the phosphorus in the lipid extract of control HDL₃ and the phosphorus in the lipid extract of the nitrated HDL₃ was found in the apolipoprotein residue of the nitrated HDL₃. A part of esterified cholesterol also was covalently linked to apolipoproteins during the nitration reaction. Thus, the esterified cholesterol content in the lipid extract of the nitrated HDL₃ was less than that in the lipid extract of the control HDL₃ (Table 1). Saponification of the apolipoprotein residue of the nitrated HDL₃ yielded cholesterol in amounts comparable to the amount found diminished in the content of esterified cholesterol in the lipid extracts of nitrated HDL₃ (Table 2). These results suggested that, during nitration of HDL₃ by tetranitromethane, a part of phospholipids and of esterified cholesterol, but not unesterified cholesterol, was covalently linked to apolipopro-

Fig. 9. Electron micrographs of negatively stained control (A) and nitrated (B) HDL₃ × 50,000.

Fig. 10. Elution profile obtained upon gel filtration chromatography of a mixture of control HDl₃ (1.3 mg of protein) and nitrated HDl₃ (2.4 mg of protein) on a Sephacryl S-200 column (2×85 cm) in 0.15 M NaCl containing 0.02% EDTA, pH 7.4, and 0.02% sodium azide. Flow rate, 20 ml/hr. Fractions (3.5 ml) were analyzed for absorption at 280 nm (protein) (\bigcirc) and at 360 nm (nitrated HDL₃) (\bullet).

teins. This might occur through the unsaturated centers of the fatty acid chains.

DISCUSSION

The present study has shown that chemical modification of HDL₃ with tetranitromethane abolished its ability to interact with the high-affinity saturable HDL binding sites of rat liver plasma membranes. Thus, HDL₃ on treatment with 10 molar excess of tetranitromethane at pH 8.0 for 1 hr completely lost its ability to compete with ¹²⁵I-labeled HDL₃ for the HDL binding sites. In addition, ¹²⁵I-labeled HDL₃ after nitration did not bind to membranes with high affinity or with saturable kinetics. Furthermore, a dose-dependent inactivation of HDL₃ by tetranitromethane suggested that the loss of the ability of HDL₃ to interact with the HDL binding sites of the membranes was related to the reaction of tetranitromethane to HDL₃. Although nitrated HDL₃ did not bind to the highaffinity saturable binding sites, it exhibited binding ability to the membranes, but the binding was nonspecific, i.e., the binding was not saturable and was not competed for by unlabeled nitrated HDL₃.

Tetranitromethane is used widely as a specific and mild reagent for the modification of tyrosine residues of proteins (39, 40). Although it is reasonably specific as a nitrating agent for tyrosine residues, oxidation of sulfhydryl groups as well as reaction with histidine, methionine, and tryptophan residues (39, 40) have been reported. The reaction with tyrosine proceeds optimally at alkaline conditions; a pH of 8.0 (0.05 M Tris-HCl) is usually used (38), which was the condition selected for the nitration of HDL3 in the present study. That the nitration of tyrosine residues of HDL₃ did occur during the treatment with tetranitromethane was indicated by the following results: a), the formation of nitroformate (a byproduct formed in the reaction of tetranitromethane with tyrosine residues) as measured by its absorptions at 350 nm (Fig. 1); b), an increase in the anodic electrophoretic mobility of modified HDL₃ in the agarose gel, indicating the possible generation of negatively charged nitrotyrosine groups (Fig. 3); c), an apparent reduction in the protein content of modified HDL₃ when determined according to the Lowry procedure (32); d), the appearance in the modified HDL₃ of a new pH-dependent absorption band with a maximum of around 440 nm at alkaline pH, presumably due to nitrotyrosine residues (Fig. 2); and finally e), the

	Experi	iment 1	Experiment 2		
	Control HDL ₃	Nitrated HDL ₃	Control HDL ₃	Nitrated HDL ₃	
Phosphorus, µg/mg protein	10.1	9.8	12.3	11.6	
Phosphorus (Bligh-Dyer extract), µgP/mg protein	10.2	7.7	12.6	6.8	
Phosphorus in apolipoprotein residue, μ g/mg protein	0.1	2.4	0.2	3.8	
Total cholesterol, μ g/mg protein	168.7	149.3	203.8	131.6	
Unesterified cholesterol, µg/mg protein	18.5	18.8	26.2	21.3	
Esterified cholesterol, µg/mg protein	150.2	130.5	177.6	110.3	

TABLE 1.	Lipid	composition	of	control	and	nitrated	HDL
----------	-------	-------------	----	---------	-----	----------	-----

IOURNAL OF LIPID RESEARCH

TABLE 2. Cholesterol content of control and nitrated HDLs"

	Control HDL ₃	Nitrated HDL,
Unesterified cholesterol, µg/mg protein ⁶	20.8	18.1
Esterified cholesterol, µg/mg protein ⁶	138.1	105.8
Esterified cholesterol bound to apolipoprotein, µg/mg protein'	0	24.2

^aAverage of two determinations.

^bDetermined in the Bligh-Dyer extract.

⁶Determined after saponification of the apolipoprotein residue (37). Apolipoprotein residue was prepared by the methanol-chloroform-ethyl ether extraction procedure of Lux, John, and Brewer (36).

disappearance of tyrosine residues with a concomitant appearance of nitrotyrosine residues, but with no change in the composition of any other amino acids, in the amino acid analysis of modified HDL₃ (Fig. 4).

As compared to reports on other proteins (38, 39), the reaction of tetranitromethane with HDL₃ proteins appears to be rapid and requires lower concentrations of reagent. More than 90% of the tyrosine residues was modified when HDL₃ was reacted with a relatively low concentration of 10 molar excess of tetranitromethane. Attempts to estimate the extent of nitration of tyrosine residues by spectrophotometric means were not successful, in that a value higher than the expected maximum of tyrosine residues for apolipoprotein A-I was obtained. Spectrophotometric properties of modified HDL₃ require further comments. At pH 8.0, nitrated HDL₃ did not show any prominent absorption at 420 nm as is seen in standard nitrotyrosine (Fig. 2B); however, it had a strong absorption band with a maximum at 360 nm. When the sample was taken in pH 10, a new absorption band appeared, as a shoulder, with a maximum at approx. 440 nm. In addition, there was a reduction in intensity of the 360 nm band as well as a shift to a higher wavelength of 370 nm maximum. A simple explanation for these observations is that only a part of the 360 nm band is due to nitrotyrosine residues, that these residues exist in a hydrophobic environment, and this absorption is shifted to 440 nm in pH 10. The remaining absorption in the 360 nm band is due to byproducts, such as nitroformate, dissolved in the core of the lipoprotein particles.

Extensive cross-linking of apolipoprotein and lipid components was detected in the modified HDL₃. As is seen in the SDS-polyacrylamide gel pattern (Fig. 8), very little of the apolipoprotein of original HDL₃ was seen in the nitrated HDL₃, obviously converted to high molecular weight polymers. Cross-linking was not limited to apolipoproteins. Evidence for covalent linkage of lipids to apolipoproteins was obtained when analysis of the chloroform-methanol extract of modified HDL₃ was made. A reduction in the content of phospholipid and cholesteryl ester was seen. They were detected, as phosphorus in the case of phospholipids and as unesterified cholesterol after saponification in the case of cholesterol ester, in the apolipoprotein residue. The extent of polymerization of apolipoproteins and the covalent association of phospholipid are related to the concentration of reagent used for the modification of HDL_3 .

Since the reaction involves free radical intermediates (40), inter- and intra-molecular cross-linking can be expected during the nitration of HDL₃ with tetranitromethane. Cross-linking and aggregation have been reported during the nitration of several proteins (39). The extent of cross-linking is dependent on variables such as the concentration of the reagent used, the protein concentration, the nature of the protein being studied, and the solvent conditions (e.g., pH). The chemical nature of the cross-linking has not been unambiguously established. Linkage between tyrosine side chains is likely, although other types of linkage are possible in the case of HDL_3 , including that involving unsaturated centers of the lipids of lipoproteins. It is likely that the phospholipids and cholesteryl esters found linked to apolipoproteins are attached through the double bonds. The extensive crosslinking of apolipoproteins and lipids at a relatively low reagent concentration during the nitration of HDL₃ may be related to the increased solubility of tetranitromethane in the apolar core of the lipoprotein particles and the presence of reactive unsaturated centers in the lipids. The location of tyrosine residues in the hydrophobic region of the amphipathic helix would favor their cross-linking to fatty acid chains. The linkage of cholesteryl esters to apolipoprotein is compatible with the idea that tetranitromethane partitions in the lipid core of HDL₃ and reacts with components in, and in association with, the lipid core.

No definite conclusion can be drawn from this study on the mechanism by which tetranitromethane inactivates HDL_3 so that it cannot interact with its binding sites. It could be argued that tyrosine-containing peptide segments of apolipoprotein(s) are involved in recognition of the HDL binding sites and that the nitration of tyrosine interfered in their interaction. Such a specific role of tyrosine does not seem compatible with the recent finding of the relatively nonspecific properties of HDL binding sites (26). It is more likely, however, that the inactivation may be related to cross-linking of the apolipoproteins to themselves and to lipid components during the nitration reaction. Whatever the mechanism of inactivation, the availability of a modified HDL₃ preparation with no binding ability to the high-affinity saturable binding sites will be useful for studies related to the functional aspects of HDL binding sites.

I wish to thank Drs. J. B. Marsh, G. H. Rothblat, and J. B. Karlin for their interest and advice. I gratefully acknowledge the excellent technical assistance of Madeline D'Agui. I thank Michael Goldfinger for the cholesterol analyses. I am indebted

to Drs. R. Angeletti and J. F. Strauss III, University of Pennsylvania, for the amino acid analyses. A research resources grant from NIH, RR01412, provided the microsequencing and amino acid analyzer equipment. This research was supported in part by NIH grant No. P01-HL22633.

Manuscript received 3 December 1984.

REFERENCES

- Nakai, T., P. S. Otto, D. L. Kennedy, and T. F. Whayne. 1976. Rat high density lipoprotein subfraction (HDL_s) uptake and catabolism by isolated rat liver parenchymal cells. *J. Biol. Chem.* 251: 4914-4921.
- Ose, L., T. Ose, K. R. Norum, and T. Berg. 1979. Uptake and degradation of ¹²⁵I-labeled high density lipoproteins in rat liver cells in vivo and in vitro. *Biochim. Biophys. Acta.* 574: 521-536.
- van Berkel, T. J. C., J. K. Kruijt, T. van Gent, and A. van Tol. 1980. Saturable high affinity binding of low density and high density lipoprotein by parenchymal and nonparenchymal cells from rat liver. *Biochem. Biophys. Res. Commun.* 92: 1002-1008.
- 4. Gwynne, J. T., and B. Hess. 1980. The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis. J. Biol. Chem. 255: 10875-10883.
- Gwynne, J. T., T. Hughes, and B. Hess. 1984. Characterization of high density lipoprotein binding activity in rat adrenocortical cells. J. Lipid Res. 25: 1059-1071.
- Kovanen, P. T., W. J. Schneider, G. M. Hillman, J. L. Goldstein, and M. S. Brown. 1979. Separate mechanisms for the uptake of high and low density lipoproteins by mouse adrenal gland in vivo. J. Biol. Chem. 254: 5498-5505.
- Wu, J-D., J. Butler, and J. M. Bailey. 1979. Lipid metabolism in cultured cells. XVIII. Comparative uptake of low density and high density lipoproteins by normal, hypercholesterolemic, and tumor virus-transformed human fibroblasts. J. Lipid Res. 20: 472-480.
- Tauber, J. P., D. Goldminz, and D. Gospodarowicz. 1981. Up-regulation in vascular endothelial cells of binding sites of high density lipoprotein induced by 25-hydroxycholesterol. *Eur. J. Biochem.* 119: 327-339.
- Miller, N. E., D. B. Weinstein, and D. Steinberg. 1977. Binding, internalization, and degradation of high density lipoprotein by cultured normal human fibroblasts. J. Lipid Res. 18: 438-450.
- Oram, J. F., J. J. Albers, M. C. Cheung, and E. L. Bierman. 1981. The effects of subfractions of high density lipoprotein on cholesterol efflux from cultured fibroblasts. J. Biol. Chem. 256: 8348-8356.
- Biesbroeck, R., J. F. Oram, J. J. Albers, and E. L. Bierman. 1983. Specific high affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells. J. Clin. Invest. 71: 525-539.
- Fidge, N. H., P. J. Nestel, and N. Suzuki. 1983. Comparison of binding, and degradation of high density lipoprotein by intestinal mucosa cells, fibroblasts and adrenal cortical cells in culture. *Biochim. Biophys. Acta.* 753: 14-21.
- Fidge, N. H., M. Leonard-Vanevsky, and P. Nestel. 1984. The hormonal stimulation and degradation by cultured rat adrenal cortical cells. *Biochim. Biophys. Acta.* 793: 180-186.
- Soltys, P. A., O. W. Portman, and J. P. O'Malley. 1982. Binding properties of high density lipoprotein subfractions and low density lipoproteins to rabbit hepatocytes. *Biochim. Biophys. Acta.* 713: 300-314.

- Bachorik, P. S., F. A. Franklin, D. G. Virgil, and P. O. Kwiterovich, Jr. 1982. High affinity uptake and degradation of apolipoprotein E-free high density lipoprotein and low density lipoprotein in cultured porcine hepatocytes. *Biochemistry.* 21: 5675-5684.
- Tamai, T., W. Patsch, D. Lock, and G. Schonfeld. 1983. Receptors for homologous plasma lipoproteins on a rat hepatoma cell line. J. Lipid Res. 24: 1568-1577.
- 17. Suzuki, N., N. Fidge, P. Nestel, and J. Yin. 1983. Interaction of serum lipoproteins with the intestine. Evidence for specific high density lipoprotein-binding sites on isolated rat intestinal mucosal cells. J. Lipid Res. 24: 253-264.
- Kovanen, P. T., M. S. Brown, and J. L. Goldstein. 1979. Increased binding of low density lipoprotein to liver membranes from rats treated with 17 α-ethinyl estradiol. J. Biol. Chem. 254: 11367-11373.
- Hui, D. Y., T. L. Innerarity, and R. W. Mahley. 1981. Lipoprotein binding to canine hepatic membranes. Metabolically distinct apo-E and apo-B, E receptors. J. Biol. Chem. 256: 5646-5655.
- Chen, Y. I., F. B. Kraemer, and G. M. Reaven. 1980. Identification of specific high density lipoprotein-binding sites in rat testes and regulation of binding by human chorionic gonadotropin. J. Biol. Chem. 255: 9162-9167.
- Christie, M. H., J. T. Gwynne, and J. F. Strauss III. 1981. Binding of human high density lipoproteins to membranes of luteinized rat ovaries. J. Stenid Biochem. 14: 671-678.
- Hwang, J., and K. M. J. Menon. 1983. Characterization of low density and high density lipoprotein receptors in rat corpus luteum and regulation by gonadotropin. J. Biol. Chem. 288: 8020-8027.
- Chacko, G. K. 1982. Human high density lipoprotein (HDL₃) binding to rat liver plasma membranes. *Biochim. Biophys. Acta.* 712: 129-141.
- Oram, J. F., E. A. Brinton, and E. L. Bierman. 1983. Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells. J. Clin. Invest. 72: 1611-1621.
- Wu, J. D., and J. M. Bailey. 1980. Lipid metabolism in cultured cells: studies on lipoprotein-catalyzed reverse cholesterol transport in normal and homozygous familial hypercholesterolemic skin fibroblasts. Arch. Biochem. Biophys. 202: 467-473.
- Chacko, G. K. 1984. Characterization of high-density lipoprotein binding sites in rat liver and testes membrane. *Biochim. Biophys. Acta.* 795: 417-426.
- Hatch, F. T., and R. S. Lees. 1968. Practical methods for plasma lipoprotein analysis. Adv. Lipid Res. 6: 1-68.
- Quarfordt, S. H., R. S. Jain, L. Jakoi, S. Robinson, and F. Shelburne. 1978. The heterogeneity of rat high density lipoproteins. *Biochem. Biophys. Res. Commun.* 83: 786-793.
- Marsh, J. B., and C. E. Sparks. 1979. Lipoproteins in experimental nephrosis: plasma levels and compositions. *Metabolism.* 28: 1040-1045.
- Bilheimer, D. W., S. Eisenberg, and R. I. Levy. 1972. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. *Biochim. Biophys. Acta.* 260: 212-221.
- Ray, T. K. 1970. A modified method for the isolation of the plasma membrane from rat liver. *Biochim. Biophys. Acta.* 196: 1-9.
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Clarke, J. M., Jr. 1964. Experimental Biochemistry. W. H. Freeman and Co., San Francisco. 95.

JOURNAL OF LIPID RESEARCH

- Bligh, E. G., and J. Dyer. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.
- 35. Rouser, G., A. N. Siakotos, and S. Fleischer. 1966. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. *Lipids.* 1: 85-86.
- Lux, S. E., K. M. John, and H. B. Brewer. 1972. Isolation and characterization of apo Lp-Gln-II (apo A-II), a plasma high density apolipoprotein containing two identical polypeptide chains. J. Biol. Chem. 247: 7510-7518.
- 37. Ishikawa, T. T., J. Maclee, J. A. Merrison, and C. T. Gluck. 1974. Quantitative analysis of cholesterol in 5 to 20

µl of plasma. J. Lipid Res. 15: 286-291.

- Sokolovsky, M., J. F. Riordan, and B. L. Vallee. 1966. Tetranitromethane. A reagent for the nitration of tyrosyl residues in proteins. *Biochemistry.* 5: 3582-3589.
- Lundblad, R. L., and C. M. Noyes. 1984. Chemical Reagents for Protein Modification. II. CRC Press, Inc., Boca Raton, FL. 73-103.
- Glazer, A. N. 1976. The chemical modification of proteins by group specific and site specific reagents. The Proteins II. H. Newrath and R. Hill, editors. Academic Press, New York. 57-65.